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Abstract

An important source of uncertainty in climate models is linked to the calibration of
model parameters. Interest in systematic and automated parameter optimization pro-
cedures stems from the desire to improve the model climatology and to quantify the av-
erage sensitivity associated with potential changes in the climate system. Neelin et al.5

(2010) used a quadratic metamodel to objectively calibrate an atmospheric circulation
model (AGCM) around four adjustable parameters. The metamodel accurately esti-
mates global spatial averages of common fields of climatic interest, from precipitation,
to low and high level winds, from temperature at various levels to sea level pressure
and geopotential height, while providing a computationally cheap strategy to explore10

the influence of parameter settings. Here, guided by the metamodel, the ambiguities
or dilemmas related to the decision making process in relation to model sensitivity and
optimization are examined. Simulations of current climate are subject to considerable
regional-scale biases. Those biases may vary substantially depending on the climate
variable considered, and/or on the performance metric adopted. Common dilemmas15

are associated with model revisions yielding improvement in one field or regional pat-
tern or season, but degradation in another, or improvement in the model climatology
but degradation in the interannual variability representation. Challenges are posed to
the modeler by the high dimensionality of the model output fields and by the large num-
ber of adjustable parameters. The use of the metamodel in the optimization strategy20

helps visualize trade-offs at a regional level, e.g. how mismatches between sensitiv-
ity and error spatial fields yield regional errors under minimization of global objective
functions.

1 Introduction

General circulation models (GCMs) are an invaluable tool to understand and predict cli-25

mate variability and change. Climate simulations, however, involve complex interactions
among many processes, including turbulent mixing in both ocean and atmosphere,
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cloud physics, small scale moist convection, and aerosol dynamics, among others.
These processes are too small scale or too complex to be explicitly resolved, and are
commonly replaced by parameterizations of various sophistication. The modeling of
those processes and their interactions remains imperfect, and GCM predictions have
large uncertainties that depend on the climate variable of interest. For example, over5

tropical regions the representation of mean precipitation or wind patterns are prone to
biases comparable in magnitude to the observed signal in certain regions (Covey et al.,
2003; Dai, 2006; Meel et al., 2007; Kidston and Gerber, 2010; Stephens et al., 2010;
Swart and Fyfe, 2012; van Oldenborgh et al., 2012; Barimalala et al., 2012).

Model biases depend on both parameterizations and on the choice of parameters10

used, and there is no general agreement on the set of key model parameters that
are uncertain yet critical in GCM performances. It is also not clear if all relevant un-
certainties are linked to parameterization and parameter choices, or else if GCMs are
prone to structural instabilities that cannot be expressed only as parameter variations
(McWilliams, 2007). Systematic investigations of parameter space in climate models15

have been performed for single models using the so called “perturbed physics” strat-
egy (Murphy et al., 2004; Knight et al., 2007; Rougier et al., 2009; Collins et al., 2010;
Rowlands et al., 2012). The outcome of those simulations has to then be compared
with observations to narrow the range of acceptable parameters.

Alternatively to the perturbed physics approach, for a given GCM it is common prac-20

tice to settle on an optimized set of parameters – optimized according to the modeler
needs – and retest and tune multiple aspects of the model every time a given pa-
rameter value or parameterization scheme are modified. This exercise is carried out
primarily by trial-and-error, and in most, if not all, cases a model revision in the GCM
parameter setting yields improvement in one field or geographic region, but degrada-25

tion in another. In Neelin et al. (2010) we proposed an algorithm that would partially
automate this process in a computationally efficient manner, helping to condense in-
formation for the modeler. This approach stems from the engineering and theoretical
optimization literature and uses a multi-objective optimization technique, while relaying
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on standard packages available for constrained optimization problems. It is based on
approximating the model’s parameter dependence to a low-order polynomial, by using
a limited number of model integrations. A significant advantage of the procedure that
we outlined in Neelin et al. (2010) is that optimization can be performed repeatedly for
as many objective functions as the user desires at low computational cost.5

Here we further explore basic issues in model parameter dependence using an at-
mospheric circulation model (AGCM) to assess the potential for a wide implementation
of this procedure, while focusing on the ambiguities related to the parameter decision
process. When trying to optimize a model set-up, it is necessary to define an objective
or cost function that measures the distance between selected metrics of the model10

output for a given set of parameters, and those of the observed climate. We focus
on exploring optimization differences for varying metrics of interest, for example using
square- or root-mean-square (RMS) error of key climate variables versus using regres-
sions on a widely used El Niño Southern Oscillation index. We also investigate regional
spatial patterns of signal, sensitivity, and error, as the choice of the objective function15

is expected to be user dependent and possibly localized to a given spatial region.

2 Model and experimental design

The atmospheric model used in this study is the International Centre for Theoretical
Physics (ICTP) AGCM (Molteni, 2003). It is based on a hydrostatic spectral dynamical
core (Held and Suarez, 1994), and adopts the vorticity-divergence form described in20

Bourke (1974). The ICTP AGCM includes, in the parameterized processes, short- and
long-wave radiation, large-scale condensation, convection, surface fluxes of momen-
tum, heat and moisture, and lateral and vertical diffusion. Convection is represented
by a mass-flux scheme that is activated where conditional instability is present, and
boundary layer fluxes are obtained by stability-dependent bulk formulae. Land and ice25

temperature anomalies are determined by a simple one-layer thermodynamic model. In
this study, the AGCM is configured with eight vertical (sigma) levels and with a spectral
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truncation at total wavenumber 30. Applications of the ICTP AGCM can be found in
e.g. Bracco et al. (2004); Kucharski et al. (2006, 2007, 2009).

As in Neelin et al. (2010), we analyze a suite of AGCM integrations forced by ob-
served sea surface temperatures (SST) from the HadISST dataset (Rayner et al.,
2003). Four parameters are varied, specifically the subgrid scale wind gustiness5

(WGust), a horizontal viscosity parameter corresponding to a damping time (Damp),
the cloud albedo parameter (ClAlb), and the relative humidity parameter from the deep
convective parameterization (RHConv). To each of those we assign an admissible range
based on the properties of the parameterization and the model numerics, and we
choose nine values centered at the standard setting recommended and validated by10

ICTP (http://users.ictp.it/∼kucharsk/speedy8 clim v41.html). We verified that most of
those parameters, in the selected ranges, do not influence substantially the global av-
eraged top-of-atmosphere net energy flux (variations are less than 10 %). A noticeable
exception is ClAlb that causes unrealistic variations of the energy flux from −10 Wm−2

to 26 Wm−2. Ensembles of ten members, each member starting from slightly differ-15

ent initial conditions, are carried out over the period 1977–2002 for each parameter
value considered. The last 25 yr are used in the following analysis and the first year is
discarded as spin-up.

3 Metamodel formulation and accuracy

In Neelin et al. (2010) we explored the parameter dependence of the ICTP AGCM in20

a suite of global measures and found it generally smooth. Such characteristic has been
confirmed by Bellprat et al. (2012) for a state-of-the-art regional climate model (RCM)
when varying a suite of five parameters, and by Archibald et al. (2012) for the Com-
munity Atmosphere Model (CAM) in relation to changes to the critical relative humidity
thresholds for the formation of low level or middle to high level clouds. The smoothness25

lead us to adopt a low-order polynomial strategy of fitting parameter dependences.
More specifically, we constructed a computationally cheap metamodel to estimate the

2735

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/6/2731/2013/gmdd-6-2731-2013-print.pdf
http://www.geosci-model-dev-discuss.net/6/2731/2013/gmdd-6-2731-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://users.ictp.it/~kucharsk/speedy8_clim_v41.html


GMDD
6, 2731–2767, 2013

Decision dilemmas
in climate models

A. Bracco et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

root mean square error of any model quantity for a given combination of the input pa-
rameters, assuming that changes due to a perturbation of one parameter are approx-
imated by a 2nd order polynomial regression. If two parameters are varied at once,
a non-linear term for each parameter pair is introduced in the metamodel computation,
and perturbations of more than two parameters are approximated by the sum of the5

non-linear terms of all possible pairs.
Following Neelin et al. (2010), the quadratic metamodel fit to a climate field φ(x,t)

that depends on space and time can be expressed as

φmm =φstd +
N∑
i=1

aiµi +
N∑
i=1

N∑
j=1

bi ,jµiµj , (1)

where µi = µipert
−µistd

is the parameter i taken relative to its standard value, N the10

number of parameters considered, and φ(x,t) is any statistic from the model out-
put chosen by the modeler. Here ai (x,t) is a high-dimensional vector containing the
linear coefficients for each parameter at each grid point in time, and bi ,j (x,t) repre-
sents the quadratic (diagonal) and interaction (off-diagonal) terms, with the assumption
bi ,j (x,t) = bj ,i (x,t). Thus a fit procedure of order N allows to estimate the linear sen-15

sitivity and the quadratic nonlinearity, while the off-diagonal coefficients, obtained with
a number of simulations of order N2, can be calculated from the corners of pairwise
planes.

Figure 1 exemplifies the procedure by showing the Root-Mean-Square (RMS) error
of the ensemble mean climatologies compared to the National Centers for Environ-20

mental Predictions (NCEP) reanalysis (Kalnay et al., 1996) (panels a–c) or the Climate
Prediction Center Merged Analysis of Precipitation (CMAP, Xie and Arkin, 1997) (panel
d) for slices along the four parameter directions for different climate variables. The vari-
ables vary from zonal wind at 200 hPa (WGust), to meridional wind at 925 hPa (ClAlb),
geopotential height anomalies at 500 hPa (Damp), and rainfall (RHConv). We con-25

sider climatologies in boreal summer (June–August, JJA), winter (December–February,
DJF), and annual averages. In Fig. 1, together with the RMS errors evaluated from the
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model output, we present the error reconstructions by the quadratic metamodel (solid
lines) and its linear counterpart (dashed lines) using only the endpoints and the stan-
dard case. As already mentioned, in all cases the parameter dependence is smooth in
large-scale measures, and the quadratic fit reproduces it extremely well when the 10-
member ensemble mean is used, independently of the parameter or climate variable5

selected. If only one 25 yr long ensemble member is considered, on the other hand, it
is possible to achieve an estimate of sensitivity but the variation in φ is not very smooth
for many parameters and variables.

Often, the linear metamodel provides a reasonable fit over the entire parameter
range, with the quadratic term contributing only a small correction. In few cases, how-10

ever, the quadratic term is essential to capture the negative curvature of the depen-
dence, as for the RMS error of precipitation on RHConv. In Fig. 1 it is also evident that
the parameter dependence varies with seasons, and the parameter optima for summer,
winter or annual averages may not coincide, as in the case of the wind fields analyzed.
This is a known, common problem, especially in coupled general circulation models,15

and identifies a first dilemma associated with parameter optimization and sensitivity:
its temporal dependence. For global quantities, the RMS errors in the annual averages
tend to be smaller than the corresponding seasonal ones, again suggesting that the
model error may change sign within the year, and cancellations are common whenever
all months are considered.20

We have shown so far that the metamodel is helpful in reconstructing the globally
averaged model error for varying parameters. In doing so, we synthesized the param-
eter dependence in one number. In the spatial structure, however, discrepancies be-
tween the AGCM output and the metamodel reconstruction could be large but homoge-
neously distributed around zero, and cancel each other when averaged globally. Before25

proceeding in our optimization exercise and in the analysis of regional parameter de-
pendences, we need to quantify those discrepancies. By construction, the model and
metamodel error patterns coincide at the standard µi values and at the two extremes
(µiMin

and µiMax
). The four ensembles at intermediate µ values, on the other hand, allows
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us to compare the model output with the reconstructed one. As an example, the maps
of the DJF modeled precipitation error for RHConv = 0.8, of the reconstructed error from
the metamodel, and of their difference, are shown in Fig. 2. In the difference, both pos-
itive and negative contributions are indeed present, but overall their amplitude is small
(at most 10 % of the AGCM error). We verified for a large number of variables of climate5

interest that the metamodel provides indeed a very good approximation of the global
averaged RMS error and of its pattern. Videos displaying the evolution across the pa-
rameter space of the modeled precipitation error, of the metamodel error, and their
difference for all µi can be found in the Supplement. Obviously, the metamodel allows
for evaluating the error patterns for continuous variations of µi , and not just for a sub-10

set of discrete values. Videos of the metamodel representation of precipitation error
changes (evaluated against CMAP) for the four parameters investigated, continuously
varied in their acceptable range are also available in the Supplement.

4 Global scale optimization ambiguities

Having established the ability of the metamodel in identifying the optima parameter15

space over the feasible range, we summarize such space in Table 1 for a number of
variables of common interest to climate scientists, from precipitation, low level winds,
land surface temperature and mean sea level pressure, to vertical velocity at 500 hPa,
and temperature and winds at the top of the atmosphere, for boreal winter and sum-
mer. The parameter optima are easily obtained from the metamodel (here including the20

quadratic terms) using a standard Matlab function for constrained optimization (fmin-
con), which is part of the Optimization Toolbox. The location of the optima in param-
eter space differs significantly for different climate variables and in the two seasons,
highlighting the contradictions faced by the modeler whenever optimizing one variable
versus another, or summer versus winter climatologies. The metamodel, on the other25

hand, proves to be a practical and computationally cheap tool to estimate the model
sensitivity and the trade-offs between objective functions.
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Once the optima have been identified, it is important to evaluate them together with
trade-offs associated with parameter changes around the optima. In other words, it is
important to quantify the error introduced adopting a parameter setting different from
the optimized one, for any given variable. This information can be easily obtained with
the metamodel and is provided in Tables 2 and 3, where we summarize the trade-5

offs for all other climate variables at the optimum parameter setting of each of them,
one at the time, for boreal winter and summer, respectively. The examination of the
steepness of the fits provides also hints to this end, with flat curves being indicative of
small dependence, and vice versa. Two-dimensional plots as the one shown in Fig. 3
for DJF precipitation help visualizing the relative dependence of the parameters, two10

at the time. In the figure, together with the evolution of the RMS error of the modeled
climatology in the parameter space, we also indicate the areas in which the increase
in RMS error from its minimum at the optima is less than 1, 5, and 10 %. The exam-
ination of Fig. 3 reveals that the choice of Damp plays a lesser role in the represen-
tation of precipitation (and, as it appears, of most variables), while the optimum in the15

RHConv direction occurs at or near the upper boundary of the feasible range, with rapid
degradation away from this, suggesting the need for careful scrutiny of the convective
parameterization scheme.

It is important to stress that the approximate smoothness found for the RMS error
of the model climatologies holds, even if not as precisely, for all other quantities we20

experimented with. The modeler may indeed be more interested in optimizing the rep-
resentation of specific climate modes of variability and their teleconnections, instead
of the model climatology, and the metamodel still proves useful. Here we consider,
as example, the difference between observed and modeled El Niño Southern Oscilla-
tion (ENSO) regressed patterns, constructed using the Niño-3.4 index (Trenberth and25

Stepaniak, 2001). In Fig. 4 we show results for precipitation varying all four param-
eters, for all seasons. The RMS error in the regression patterns is far smaller than
in the case of the climatological error, indicating that the ICTP AGCM correctly simu-
lates the response to changes in SST forcing in the equatorial Pacific, and it is almost
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insensitive to the parameter choices in winter and fall, where the SST anomalies as-
sociated with ENSO are the strongest. The error grows from boreal winter and fall,
to summer and then spring, following inversely the strength of the SST signal, and in
summer and spring a negative curvature characterizes most fits, pointing to a nonlinear
dependence in those seasons. The seasonal-dependent evolution and negative curva-5

tures persist for all other variables, from surface winds to geopotential height, if their
level is 500 hPa or closer to the surface. The model representation of the atmospheric
circulation at higher levels regressed onto the ENSO index, on the other hand, does
not display any seasonal dependence, and the ENSO regressions of 200 hPa fields are
almost unaffected by the parameter changes.10

A different picture emerges if the North Atlantic Oscillation (NAO) index is used in-
stead of the Niño-3.4. The error in the ICTP AGCM representation of the atmospheric
variability associated with changes in the NAO index is quite large, and so is the inter-
nal model variability (Bracco et al., 2004). The spread within the 10 member ensembles
considered here is too large for the metamodel to be well determined (not shown), due15

to the large internal variability relative to the parameter sensitivity.
Once the metric of interest has been defined and the metamodel has been fitted to

the chosen points (here the extremes in the available parameter ranges), the AGCM
output of any parameter combination can be estimated, and the associated temporal
and regional changes can be visualized. As an example, in Fig. 5 we present the spa-20

tial pattern of the linear (ai ) and quadratic (bi i ) contributions of the metamodel (Eq. 1),
constructed using the climatological RMS error as metric for both boreal winter and
summer, in the ClAlb direction for meridional wind at 925 hPa, and in the RHConv di-
rection for precipitation. All fits are from the parameter endpoints only, i.e for for µiMax

relative to standard value (ClAlb = 0.52, and RHConv = 0.90). The sum of the two fields25

quantifies the change at µiMax
from the standard case. For the wind fields, the linear

contribution is about three times larger than the nonlinear one, is stronger in summer
than in winter, and off-phase between the two seasons considered. Both linear and
nonlinear terms show an alternation of positive and negative areas, so that the global
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RMS error does not change significantly between ClAlb = 0.52 and the standard value
(see Fig. 1), but the overall modeled wind field does. In the case of rainfall, the linear
sensitivity and the quadratic nonlinearity tend to reinforce each other in most regions,
as for example in the Indian basin and Pacific warm pool in JJA, or over South America
in DJF, and are both sufficiently strong to modify the overall patterns, especially in the5

tropics, where convective precipitation dominates. When the metamodel is constructed
using ENSO regression patters as metric, the linear and quadratic contributions for all
near surface variables are of comparable intensity. In Fig. 6 we show both contributions
to the near surface zonal wind for WGust= 7.0 compared to standard. Over the Indian
Ocean, for example, patterns have opposite sign in the two seasons considered, and10

in the same season the linear and quadratic contributions in some regions tend to can-
cel each other. The analysis of those spatial patterns help visualizing where changes
are occurring at the regional scale, and the geographical importance of nonlinearity as
function of the desidered metric.

5 Regional ambiguities15

As already remarked, some of the more pressing ambiguities in selecting climate model
parameters are linked to considerable pattern biases in different regions. Those biases
may vary substantially between climate variables, and/or on the performance metrics,
and a model revisions that improves one field or geographical area, may cause degra-
dation in another. This is exemplified in Fig. 7, where we show the JJA RMS error in20

the precipitation climatology zooming over the Indian Ocean and western Pacific at
RHConv standard value (top), at its maximum (RHConv = 0.90) – where the global error
is at its minimum – (middle), and the absolute value of the error difference (bottom). By
increasing RHConv, the effect of shallow convection on the moisture flux is increased,
and this causes greater convective activity where convection is limited by the humidity25

above the boundary layer, as for example over land, but it also carries away moisture
from the boundary layer so that, in some locations, the threshold amount of humidity
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in the boundary layer is not fulfilled anymore. As a result, the model representation of
the summer Indian Monsoon and of precipitation over parts of Vietnam and China im-
proves substantially, and the RMS error is reduced to half of its standard counterpart.
On the other hand, the model rainfall signal over the Indian Ocean south of the Equa-
tor, part of Indonesia and Papua New Guinea degrades, approximately by the same5

amount.
The metamodel allows for visualizing those trade-offs very effectively, at little com-

putational cost. The evolution of the absolute value of the error difference between the
standard case and any other value can be constructed for each parameter and any val-
ues within a realistic range simply using the ensembles at µiStd

, µiMax
and µiMin

(videos10

available in the Supplement for the precipitation field, the four parameters investigated,
and two seasons, DJF and JJA). Notwithstanding the approximation error associated
with the quadratic metamodel, usually limited to less than 10 % of the amplitude of the
reconstructed error field, and not significant in terms of overall pattern identification,
the analysis of the regional evolution of the model biases for varying parameter values15

offers a powerful tool to select parameter combinations.
The quadratic metamodel can also be used to construct objective functions for

targeted areas. Given the interest of the climate community for certain key regions,
where model biases are large, we further explore the regional ambiguities associated
with model tuning focusing on the Indian Ocean basin and Indian subcontinent (40–20

110◦ E, 30◦ S–22◦ N), South America (75–36◦ W, 30◦ S–10◦ N), and the Pacific Warm
Pool (120–170◦ E, 20◦ S–20◦ N). For each region, we construct the metamodel as be-
fore, using only information from the ensemble mean at the standard set-up, and the
integrations at µiMax

and µiMin
. In Fig. 8 we portrait the regional parameter dependence

of the RMS error of the precipitation climatology in boreal winter. The quadratic fit pro-25

vides an accurate approximation of the parameter dependence in all regions and for all
four parameters. The model error is greater over South America, independently on the
parameter investigated, identifying a deficiency of the model in representing convective
precipitation over land. Over the Indian Ocean, improvements in the WGust and Clalb
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space are achieved in the opposite direction than in the other regions or in the global
average.

A different pictures emerges if the model representation of ENSO teleconnections is
alternatively used as the metric, instead (Fig. 9). The quadratic metamodels in this case
provide valuable information on the general tendencies, but they do not always capture5

the functional form of the dependency. It should be noted, however, that the absolute
value of the difference between the metamodel fit and the actual model response is
small in all cases. This is verified for most variables, not only for precipitation. A good
example is provided by the Warm Pool region dependency on RHConv. The Pacific
Warm Pool undergoes the strongest parameter dependence in association to ENSO,10

followed by the Indian Ocean, and then by South America. This is consistent with the
decreasing relative importance of ENSO-associated anomalies in the precipitation field
from the Warm Pool to South America. Globally, the model reproduces well the ENSO
response for all parameter choices, the error in the regressions being very small (at
least three times smaller than the error in the representation of the precipitation clima-15

tology). Independent of the parameter choices, the model is capable of simulating the
global averaged ENSO response in rainfall (and in all low level atmospheric variables
we tested). The error is larger where the climate signal is the strongest, i.e. over the
Pacific Warm Pool, where it follows the global tendencies. Opposite curvature than for
South America is found over the Indian Ocean for varying WGust and Clalb, while error20

and signal averaged globally are small.
Figure 10 compares the regional objective functions with the global ones for the low

level meridional winds (left) and for zonal 200 hPa zonal winds (right) when varying
WGust and RHConv in DJF. The modeled climatologies for both wind fields are not very
sensitive to RHConv changes, and a larger than standard value of RHConv will decrease25

the precipitation error (see Fig. 8) in most of the globe without disrupting the near
surface wind, while causing a limited downgrading in the upper level wind over the In-
dian Ocean and the Pacific Warm Pool. Variations in WGust, on the other hand, show
a far more complex response. At 200 hPa the global averaged climatology displays an
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optimum around the standard value, but the error over the Indian Ocean and the Warm
Pool is minimized only at the maximum WGust explored, with a significant improve-
ment in the Indian basin, while a smaller than standard WGust is beneficial over South
America. Close to the Earth surface, the meridional wind dependence in the Indian
and Pacific regions is in the same direction of the upper level zonal wind field, and over5

South America the minimum WGust value minimizes the RMS error. For both wind
fields considered, the tendency for varying WGust is opposite to that of precipitation
over the Indian Ocean and South America.

We summarize the dilemmas associated with choosing model parameters while op-
timizing specific regional patterns (a problem of interest also to the regional modeling10

community) by visualizing the different relative dependence of the parameters consid-
ered, two at the time, for the Indian Ocean basin (Fig. 11) and the Pacific Warm Pool
(Fig. 12). We present results for DJF precipitation, to allow for a comparison with the
correspective global analysis shown in Fig. 3, and again we indicate the areas in which
the increase in regional RMS error from its minimum is less than 1, 5, and 10 %. The op-15

timization of WGust and ClAlb in any one basin, for example, causes a large degradation
in the other, while the optimization based on the global RMS error provides intermedi-
ate values between the ones found here. It is evident that the parameter dependence
of regional patterns is complicated by the fact that improvement in one variable over
one region may cause strong deterioration in another area.20

5.1 Analytical solutions

We finally recall, as discussed in Neelin et al. (2010), that analytic approximations
based on the metamodel provide an alternative, computationally cheap, tool to highlight
the regional dilemma typical of the optimization problem whenever spatial averages,
instead of global ones, are of interest. The analysis of the spatial patterns in the analytic25

solution allows the identification of regions where the parameter dependence does
not follow the global average one, without the need of calculating a large number of
regionally targeted objective functions. Given that the quadratic fit to the climate field φ
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provides RMS error objective functions f (here omitting subscript k) with fourth-order
terms in µ, we can obtain an analytical approximation using the square error (which has
the same extrema as RMS), expand in µ about a reference value (for simplicity here we
use the standard case), and retain the second-order terms in µ for expediency. After
differentiating, we obtain5

∇µf = g+Aµ (2)

gi = 2〈aiφerr〉; (3)

Ai j = Aj i = 2
(
〈aiaj 〉+2〈bi jφerr〉

)
. (4)

Here g is the gradient in µ, A is the Hessian matrix derived from the curvature of the10

metamodel fit, both evaluated at the standard case, and φerr is the error of the standard
case with respect to observations.

The off-diagonal terms in A originate from the linear contributions 〈aiaj 〉 and from
〈bi jφerr〉. They are usually small compared to the diagonal given that parameter pairs
do not interact much (Neelin et al., 2010; Bellprat et al., 2012), and they can be ne-15

glected when trying to get a general idea of the basic model behavior. Practically, gi
provides a spatial projection of the sensitivity ai with φerr, the error of the standard
case, and a reduction in error at regional scales is achieved only if the spatial pattern
of ai matches the error pattern. If, for example, ai has large amplitude in a localized
area that does not project on the error, then the global RMS optimization will introduce20

a significant error in such area despite yielding a solution that reduces the model error
globally. Therefore, maps of the spatial patterns of the different contributions in Eq. (2)
allow for quantifying at a regional level the properties of objective functions defined
for global quantities. Examples are provided in Fig. 13 for 200 hPa zonal wind depen-
dence on WGust in JJA, for 925 hPa meridional wind dependence on Clalb in DJF, and25

for rainfall dependence on RHConv, again in DJF. On top we show aiφerr normalized
by the diagonal contribution 〈a2

i 〉, which is proportional to the objective function gradi-
ent gi . If the majority of points is of the same sign, as in the case for the precipitation
dependence on RHConv in boreal summer, presented in Neelin et al. (2010) (see their
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Fig. 5), then it is to be expected that regionally focused optimizations will yield optima
in the same direction as found for the global averages. Specifically optima should be
found close to the WGust and Clalb minima for the wind fields, for which, however, the
global RMS is only slightly reduced compared to the standard case, and at the RHConv
maximum for precipitation (see Fig. 1). Here, however, the same sign requirement is5

not satisfied everywhere; for precipitation it does not hold over the equatorial Indian
Ocean, or in part of the Brazil’s Nordeste, and in the case of the wind fields, positive
and negative patterns alternate throughout the domain.

The middle row of Fig. 13 displays the quantity 2bi iφerr〈a
2
i 〉, and provides a mea-

sure of the importance of nonlinearity in the diagonal term. If the average of this term10

over the area of interest is negative, and its magnitude is greater than one, then the
curvature of the metamodel fit is reversed, as in the case of global precipitation (left
column). Finally, at the bottom we present the model error difference between the case
when µi is at its minimum (maximum) value for winds (precipitation), and when µi is at
standard. Negative values are indicative of regions where the model error decreases15

compared to the error of the standard case, and vice versa for positive values. It is clear
that the analysis of the aiφerr, together with 2bi iφerr〈a

2
i 〉 whenever the metamodel fit

points to a significant role for nonlinearities, provides an alternative low-cost way to
gather information on the model parameter dependence at regional scales that assists
the modeler’s ability to digest high dimensional spatial information on the impact of20

a parameter change.

6 Conclusions

In this work, we evaluate the sensitivity of an atmospheric circulation model to changes
in four of its tunable parameters using a metamodeling approach in which the coef-
ficients of the quadratic expansion in parameter space include spatial and seasonal25

dependence as in Neelin et al. (2010). The metamodel offers a strategy to systematize
the calibration and analysis of the parameter dependence in climate models. Rather
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than employing these tools in “blind” automated optimization based on global objective
functions, we emphasize their use for identification of sensitive parameter ranges and
of trade-offs among multiple objective functions involving different physical climate vari-
ables and spatial regions of interest. From the metamodel, we estimate objective func-
tions based on both global spatial averages and the distribution of regional patterns5

of several common fields of climatic interest, from precipitation to winds, in different
seasons and in annual averages. We also present the parameter dependence analysis
of the ICTP AGCM response to ENSO sea surface temperatures, finding substantial
nonlinearity in most low level variables. In all cases, we find that the error objective
functions vary sufficiently smoothly through the explored parameter ranges for an an-10

alytic metamodel approach to be useful, and find the quadratic truncation adequate to
estimate leading nonlinear effects.

Guided by the metamodel, we present a strategy to visualize the dilemmas asso-
ciated with the parameter selection, and to quantify the trade-offs of given parameter
choices. Common ambiguities result from not having direct control over how climate15

patterns change with parameter changes. Most dilemmas faced by modelers are asso-
ciated with parameter (or parameterization) changes that improve one field or regional
pattern over a given season, but cause degradation in another, or improve the model
climatology but degrade its representation of interannual variability. Because different
applications would place different weight on the accuracy of the simulation in particular20

regions or variables, this results in the situation typical of multi-objective optimization:
while some sets of parameter choice yield improvements in all objective functions of in-
terest, within these sets trade-offs arise among different objective functions. In climate
applications, the fidelity of the simulation evaluated for multiple variables over many
small regions in space and season can be viewed as a very high dimensional set of ob-25

jective functions. A key aim is thus to present information on the trade-offs among these
in a way that is digestible to the modeler. We have shown that using the metamodel
it is possible (a) to visualize global and regional-scale biases for any climate variable
of interest, any season, and different performance metrics at little computational cost
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(using climate model simulations similar to those typically carried out to evaluate more
basic elements of parameter sensitivity), and (b) to quantify objectively those biases
without performing an excessively large number of simulations. For example, informa-
tion such as the location of the optimum and the minimum global-average RMS error
for individual climate variables over the parameter space provides useful information5

on just how severe the trade-offs are among different variables. Spatial maps of fields
that directly enter the optimization problem, such as the product of the linear sensitivity
spatial pattern with the error field at the standard parameter settings, can rapidly pro-
vide intuition regarding spatial regions that will be improved or degraded by particular
parameter change.10

Many of the dilemmas are unresolvable as different modelers have different priorities
on which pattern should be improved at the expense of others. The metamodel, how-
ever, provides a constructive tool to identify those spatial patterns and to characterize
what the most acute dilemmas are for each given metric.

Supplementary material related to this article is available online at:15

http://www.geosci-model-dev-discuss.net/6/2731/2013/
gmdd-6-2731-2013-supplement.zip.
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Table 1. Optimized parameter setting for nine commonly analyzed climate variables in boreal
winter, December to January, and summer, June to August.

WGust DJF ClAlb DJF RHConv DJF Damp DJF WGust JJA ClAlb JJA RHConv JJA Damp JJA

Precip 4.42 0.43 0.90 10.29 5.00 0.44 0.90 7.89
U 925 hPa 3.00 0.28 0.88 6.98 4.85 0.37 0.90 4.90
V 925 hPa 5.40 0.28 0.90 5.70 7.00 0.41 0.90 7.04
MSLP 3.00 0.28 0.72 3.91 4.43 0.52 0.77 9.79
LSTA 3.00 0.52 0.9 2.00 4.19 0.52 0.90 2.85
Ω 500 hpa 4.97 0.4 0.9 7.01 5.00 0.42 0.90 7.00
U 200 hPa 4.53 0.51 0.75 7.02 3.00 0.49 0.89 2.86
V 200 hPa 5.74 0.31 0.82 8.32 6.50 0.45 0.90 8.31
T 200 hPa 3.00 0.52 0.77 2.00 3.00 0.52 0.87 2.00
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Table 2. Trade-offs associated with optimizing one variable at the time according to the setting
in Table 1 for nine climatic variables in boreal winter, December–February. The last column
provides the sum of the trade-offs given the optimization of one given variable. Trade-offs are
quantified as global root-mean square error at the given parameter setting divided by the error
at the variable optima.

Precip U 925 hPa V 925 hPa MSLP LSTA Ω 500 hPa U 200 hPa V 200 hPa T 200 hPa Total

Precip 1 1.08 1.05 1.13 1.17 1.01 1.04 1.09 1.16 9.73
U 925 hPa 1.18 1 1.03 1.02 1.35 1.07 1.22 1.10 1.34 10.31
V 925 hPa 1.17 1.07 1 1.12 1.38 1.09 1.10 1.01 1.40 10.34
MSLP 1.32 1.03 1.04 1 1.34 1.15 1.23 1.11 1.32 10.54
LSTA 1.23 1.10 1.14 1.06 1 1.19 1.09 1.26 1.01 10.08
Ω 500 hPa 1.02 1.08 1.03 1.13 1.22 1 1.04 1.05 1.22 9.79
U 200 hPa 1.10 1.09 1.10 1.11 1.06 1.07 1 1.15 1.07 9.75
V 200 hPa 1.17 1.11 1.01 1.17 1.36 1.08 1.09 1 1.17 10.34
T 200 hPa 1.26 1.11 1.13 1.05 1.01 1.19 1.08 1.24 1 10.07
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Table 3. As in Table 2 but for boreal summer, June–August.

Precip U 925 hPa V 925 hPa MSLP LSTA Ω 500 hPa U 200 hPa V 200 hPa T 200 hPa Total

Precip 1 1.02 1.03 1.01 1.20 1.01 1.10 1.02 1.19 9.58
U 925 hPa 1.08 1 1.05 1.04 1.37 1.04 1.11 1.06 1.27 10.02
V 925 hPa 1.07 1.05 1 1.03 1.27 1.03 1.20 1.01 1.32 9.98
MSLP 1.13 1.08 1.09 1 1.02 1.10 1.14 1.04 1.09 9.69
LSTA 1.16 1.08 1.09 1.03 1 1.14 1.08 1.03 1.06 9.65
Ω 500 hPa 1.01 1.01 1.03 1.02 1.24 1 1.09 1.02 1.21 9.63
U 200 hPa 1.21 1.07 1.12 1.05 1.08 1.14 1 1.06 1.03 9.76
V 200 hPa 1.05 1.06 1.01 1.02 1.18 1.03 1.20 1 1.25 9.80
T 200 hPa 1.29 1.09 1.15 1.06 1.01 1.20 1.00 1.06 1 9.86
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Fig. 1. Root-mean-square (RMS) error of the ensemble mean AGCM climatology of (a) zonal
wind at 200 hPa for varying WGust, (b) meridional wind at 925 hPa for varying ClAlb, (c) vertical
velocity at 500 hPa for varying Damp, and (d) precipitation for varying RHConv in December–
February (DJF) in blue, in June–August (JJA) in red, and for annual averages in black relative
to National Centers for Environmental Prediction reanalysis for wind fields and vertical velocity,
and to CPC Merged Analysis of Precipitation for precipitation. The AGCM values are compared
to the quadratic metamodel reconstruction based on the endpoints for each parameter, and
to its linear counterpart. Note that the linear metamodel gives quadratic terms (with positive
curvature) in the RMS error. Units on abscissa are ms−1 for WGust, days for Damp and nondi-
mensional for the remaining parameters.
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Fig. 2. (a) Spatial distribution the AGCM precipitation error relative to CPC Merged Analysis of
Precipitation for RHConv = 0.8 and all other parameters kept to standard values in December–
February. (b) Same as above but reconstructed using the quadratic metamodel. (c) Difference
between AGCM and metamodel reconstructed error. Note the different color scale in (c) com-
pared to (a) and (b). Unit: mmday−1.
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Fig. 3. Pairwise planes of the four-dimensional parameter space showing the root-mean-
square global averaged precipitation error in mmday−1 estimated by the quadratic metamodel
in December–February. The white dotted (dashed; solid) contours indicate regions where the
model error increases by 1 % (5 %; 10 %) compared to its minimum value at the parameter
optima. Units on axes are ms−1 for WGust, days for Damp and nondimensional for ClAlb and
RHConv.
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Fig. 4. Root-mean-square precipitation error of the modeled regression coefficients for the
El Niño 3.4 index in December–February in blue, March–May in magenta, June–August in
red, and September–November in black, relative to the CPC Merged Analysis of Precipitation
dataset. The AGCM values are compared to the quadratic metamodel reconstruction based on
the endpoints for each parameter, and to its linear counterpart. Units on abscissa are ms−1 for
WGust, days for Damp and nondimensional for ClAlb and RHConv.
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Fig. 5. Ensemble-mean measures of the sensitivity of the modeled error for meridional wind at 925 hPa in ClAlb (top
two panels) and precipitation in RHConv (bottom two panels), in boreal winter (December–January) and summer (June–
August). The linear contributions ai are shown on the first and third rows multiplied by µiMax

to give units of ms−1 and

mmday−1 respectively, for the values that would occur at the positive end of the feasible range of ClAlb and RHConv. The
quadratic contributions bi i , similarly given as bi iµ

2
iMax

in ms−1 and mmday−1, are shown on the second and bottom
rows. The two contributions added together represent the total difference between µiMax

and the standard case. Here
the subscript i denotes ClAlb for the wind maps and RHConv for precipitation.
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Fig. 6. Ensemble-mean measures of the sensitivity of the modeled error of the Niño 3.4 regres-
sion of zonal wind at 925 hPa at WGust= 7.0 in boreal winter (December–January) on the left,
and summer (June–August) on the right. The linear contribution ai is shown on top multiplied
by µiMax

to give units of ms−1. The quadratic contribution bi i , similarly given as bi iµ
2
iMax

in ms−1,
is shown on the bottom row. The two contributions added together represent the total difference
between µiMax

and the standard case. Here the subscript i denotes WGust.
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Fig. 7. On left: top: error of the AGCM precipitation climatology with all µi at standard value
(top); middle: as above but with RHConv at its optimum (RHConv = 0.90); bottom: absolute value
of the model error difference between top and middle row. On right: schematic showing region
where error is largest (top), where sensitivity to RHConv is greatest (middle), and where param-
eter optimization improves (in yellow) or downgrades (in red) model performance (bottom). All
plots focus on the Indian Ocean and western Pacific areas.
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Fig. 8. Root-mean-square error of the AGCM precipitation climatology in December to February
for target regions relative to the CPC Merged Analysis of Precipitation dataset. The AGCM
values are compared to the quadratic metamodel reconstruction based on the endpoints for
each parameter, and to its linear counterpart. Global average in black, Pacific Warm Pool in
magenta, Indian Ocean basin in blue and South America in red. Units on abscissa are ms−1

for WGust, days for Damp and nondimensional for ClAlb and RHConv.
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Fig. 9. Root-mean-square precipitation error of the AGCM regression coefficients for the El
Niño 3.4 index in December to February for target regions relative to the CPC Merged Anal-
ysis of Precipitation dataset. The AGCM values are compared to the quadratic metamodel
reconstruction based on the endpoints for each parameter, and to its linear counterpart. Global
average in black, Pacific Warm Pool in magenta, Indian Ocean basin in blue and South America
in red. Units on abscissa are ms−1 for WGust, days for Damp and nondimensional for ClAlb and
RHConv.
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Fig. 10. Root-mean-square error of the AGCM meridional wind at 925 hPa (left) and zonal
wind at 200 hPa (right) climatology in December to February for target regions relative to the
National Centers for Environmental Prediction reanalysis. The AGCM values are compared to
the quadratic metamodel reconstruction based on the endpoints for each parameter, and to
its linear counterpart. Global average in black, Pacific Warm Pool in magenta, Indian Ocean
basin in blue and South America in red. Units on abscissa are ms−1 for WGust (top row) and
nondimensional for RHConv (bottom row).
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Fig. 11. Pairwise planes of the four-dimensional parameter space showing the root-mean-
square precipitation error in mmday−1 estimated by the quadratic metamodel over the Indian
Ocean basin in December–February. The white dotted (dashed; solid) contours indicate re-
gions where the model error increases by 1 % (5 %; 10 %) compared to its minimum value at
the parameter optima. Units on axes are ms−1 for WGust, days for Damp and nondimensional
for ClAlb and RHConv.
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Fig. 12. As in Fig. 11 but for the Pacific Warm Pool region.
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U 200 hPa, JJA,WGust Prec,DJF,RHConv V 925 hPa,DJF,ClAlb

Fig. 13. Contributions to the analytic solution for the ensemble mean zonal wind at 200 hPa in
June to August in the WGust direction (left column), for precipitation in December–February
in the RHConv direction (center column), and for meridional wind at 925 hPa in December–
February in the ClAlb direction (right column). Top row: aiφerr normalized by the diagonal con-
tribution 〈a2

i 〉. Middle row: contribution 2bi iφerr/〈a
2
i 〉 (see Eq. 4). Bottom row: the model error

difference between µi at its optimum (µiMin
for the wind fields and µiMax

for precipitation), and at
standard value.
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